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Abstract

This paper discusses evaluation techniques of the robustness function of trusses, which is regarded as one of mea-
sures of structural robustness, under the uncertainties of member stiffnesses and external forces. By using quadratic
embedding of the uncertainty and the S-procedure, we formulate a quasiconvex optimization problem which provides
lower bounds of the robustness functions. A bisection method is proposed, where we solve a finite number of semidef-
inite programming problems in order to obtain a global optimal solution to the proposed quasiconvex optimization
problem. The lower bounds of the robustness functions are computed for various trusses under several uncertainty
circumstances.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In structural and mechanical design, deterministic design optimization models have been successfully
developed. Recently, the robust structural design has received increasing attention, which may decrease
the sensitivities of mechanical performance with respect to various uncertain parameters. For this purpose,
a number of reliability-based optimization methods as well as the robust optimal design methods have been
proposed (Ben-Tal and Nemirovski, 1997; Choi et al., 2001; Doltsinis and Kang, 2004; Kharmanda et al.,
2004; Tsompanakis and Papadrakakis, 2004).
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Based on stochastic uncertainty models of mechanical parameters, various techniques were proposed for
evaluation and estimation of failure probability (Kharmanda et al., 2004; Tsompanakis and Papadrakakis,
2004), that can be utilized in the reliability-based structural design methods. Various formulations for sen-
sitivity analysis of probabilistic structural performance were also proposed (Choi et al., 2001; Doltsinis and
Kang, 2004).

Besides stochastic uncertainty models, non-probabilistic uncertainty models have also been developed,
where so-called unknown-but-bounded uncertain parameters are included in a system. Ben-Haim and Eli-
shakoff (1990) developed the so-called convex model, with which Pantelides and Ganzerli (1998) proposed
a robust truss optimization method. For various classes of convex optimization problems, a unified meth-
odology of robust optimization, or robust counterpart scheme, was developed by Ben-Tal and Nemirovski
(2002), where the data in optimization problems are assumed to be unknown but bounded. Calafiore
and El Ghaoui (2004) proposed a method for finding the ellipsoidal bounds of the solution set of uncertain
linear equations by using the semidefinite program. Ben-Tal and Nemirovski (1997) solved the minimiza-
tion problem of compliance of a truss under unknown-but-bounded external forces.

Recently, as a measure of robustness of mechanical systems, Ben-Haim (2001) proposed the concept of
robustness function, which expresses the greatest level of non-probabilistic uncertainty at which any con-
straint on mechanical performance cannot be violated. The robustness function has an advantage, com-
pared with the reliability analyses based on stochastic uncertainty models, such that engineers have to
estimate neither the level of uncertainty nor the probabilistic distribution of uncertain parameters, which
are often difficult to estimate in practical situations.

In many practical problems, it is difficult to compute the robustness functions, which has prevented us
from applying the robustness function to the robust mechanical design. Indeed, in order to compute the
robustness function for general cases, we have to solve an optimization problem with infinitely many con-
straint conditions. See, for more details, Section 3.3. Hence, it is strongly desired to develop an efficient
method for computing the robustness functions of trusses. Under the assumption that only the external
forces possess uncertainty, the authors proposed computable formulations of the robustness functions of
trusses (Kanno and Takewaki, 2004a). Takewaki and Ben-Haim (in press) computed the robustness func-
tions in a particular case where the most critical case can be obtained analytically. However, to the authors�
knowledge, no efficient method has ever been proposed which enables us to evaluate the robustness func-
tions when the stiffness matrix of a truss also includes uncertain parameters.

In this paper, we deal with a linear elastic truss subjected to uncertainties of external forces and stiff-
ness of members. Particularly, we pay much attention to the case where the truss can be modeled as com-
bination of two trusses, which have different characteristics of uncertainty. Consider the following two
trusses:

(i) a truss with the certain member stiffness supporting the uncertain external forces;
(ii) a truss consisting of members with uncertain stiffness under the certain external forces.

The member locations of these trusses are assumed to be certain. Small rotations and small strains are
assumed. We say that a truss obeys separable uncertainty model if the truss is modeled as a combination of
trusses (i) and (ii). By separable we mean that a structure can be divided into the two components (i) and
(ii), where the truss (i) possesses uncertain parameters only in the external forces, and the truss (ii) includes
uncertain parameters only in the member stiffnesses.

In many practical situations, e.g., structure–soil interaction models, we can divide a structural system
into two parts, one of which principally suffers the uncertain external loads, and the other has relatively
large uncertainties of the stiffness parameters. In such cases, the separable uncertainty models of trusses
can be used as approximation models of the uncertainty structural systems. In the case of a structure–soil
interaction model, the stiffness parameters of the structure are relatively certain, whereas the soil has very
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large uncertainties of the stiffness parameters. It is obvious that the separable uncertainty model includes a
structure consisting of either the truss (i) or (ii).

Our purpose is to propose an efficient algorithm for computing the robustness functions of trusses with
separable uncertainties. Particularly, we formulate a numerically tractable optimization problem, which
provides a lower bound on the robustness function. Note that a lower bound is regarded as a conservative
estimation of the robustness function, i.e., a level of uncertainty at which the satisfaction of the constraints
of mechanical performance is guaranteed. Hence, finding a lower bound, not an upper bound, is meaning-
ful when it is difficult to find the exact value of the robustness function.

Our approach in this paper is summarized as follows. We first show that the robustness function can be
obtained as the optimal objective value of an optimization problem with a finite number of variables and
infinitely many constraint conditions. Secondly, by using quadratic embedding of the uncertainty and the
S-procedure (Ben-Tal and Nemirovski, 2001, Section 4.10.5), we formulate a finite-dimensional optimiza-
tion problem that provides a lower bound on the robustness function. This fundamental idea is similar to
that used in Calafiore and El Ghaoui (2004). The obtained problem is shown to be a quasiconvex optimi-
zation problem. Finally, we propose a bisection algorithm based on a convex feasibility problem (Boyd and
Vandenberghe, 2004, Section 4.2.5), which finds a global optimal solution of the proposed problem by solv-
ing a finite number of the semidefinite programming (SDP) problems (Wolkowicz et al., 2000). At each iter-
ation of the algorithm, an SDP problem can be efficiently solved by using the primal–dual interior-point
method (Kojima et al., 1997).

It should be emphasized that this approach can be extended to a more general representation of uncer-
tainty models. Indeed, as shown in Section 4, the assumption of separable uncertainty is not necessarily to
constructing a quasiconvex optimization problem providing a lower bound on the robustness function. In
this context, we shall observe that the separable uncertainty is regarded as a special case where the size of
problems solved in our algorithm size can be reduced. See, for more details, Remarks 4.5 and 4.7.

This paper is organized as follows. In Section 2, in order to make this paper self-contained, we introduce
SDP and quasiconvex optimization problems, as well as some useful technical results. Section 3 introduces
a separable uncertainty model of trusses. We formulate in Section 3.3, an optimization problem with infi-
nitely many constraints such that the optimal objective value coincides with the robustness function of
trusses. Section 4 presents a quasiconvex optimization problem with a finite number of variables and con-
straints in order to compute a lower bound on the robustness function. We also propose an algorithm,
which finds a global optimal solution of the present quasiconvex optimization problem. Numerical exper-
iments are presented in Section 5 for trusses under various uncertainty circumstances. We conclude the
paper in Section 6.
2. Preliminary results

In this paper, all vectors are assumed to be column vectors. However, for vectors p 2 Rm and q 2 Rn, we
often simplify the notation (p>,q>)> as (p,q). For two sets U � Rm and V � Rn, their Cartesian product is
defined by U · V = {(u,v) 2 Rm+n ju 2 U, v 2 V}. Particularly, we write Rm+n = Rm · Rn.

The standard Euclidean norm kpk2 = (p>p)1/2 of a vector p 2 Rn is often abbreviated by kpk. kpk1 de-
notes the l1-norm of p = (pi) 2 Rn defined as
kpk1 ¼ max
i2f1;...;ng

jpij:
Let Rn
þ � Rn denote the non-negative orthant defined by
Rn
þ ¼ x ¼ ðxiÞ 2 Rn j xi P 0; i ¼ 1; . . . ; nf g:
For a set X, we denote by PðX Þ the power set of X.
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2.1. Semidefinite program

Let Sn � Rn�n denote the set of all n · n real symmetric matrices. Sn
þ �Sn denotes the set of all positive

semidefinite matrices. We write P � O and P � Q, respectively, if P 2Sn
þ and P �Q 2 Sn

þ.
For any P 2Sn and Q 2 Sn, we designate by P • Q the standard inner product of P and Q in the linear

space Sn, i.e.,
P �Q ¼ trðP>QÞ ¼
Xn

i¼1

Xn

j¼1

P ijQij:
The semidefinite programming (SDP) problem refers to the optimization problem having the form of
(Wolkowicz et al., 2000)
min C � X ;

s:t: Ai � X ¼ bi; i ¼ 1; . . . ;m;

Sn 3 X � O;

9>=>; ð1Þ
where X is a variable matrix, and Ai 2 Sn, i = 1, . . . ,m, b = (bi) 2 Rm, and C 2Sn are constant. The dual
of Problem (1) is formulated in variables y 2 Rm as
max b>y;

s:t: C �
Pm
i¼1

Aiyi � O;

9=; ð2Þ
which is also an SDP problem.
Recently, SDP has received increasing attention for its wide fields of application (Ben-Tal and Nemirov-

ski, 2001; Ohsaki et al., 1999; Wolkowicz et al., 2000). It is well known that linear program (LP), second-

order cone program (SOCP), etc., are included in SDP as the particular cases (Ben-Tal and Nemirovski,
2001). The primal–dual interior-point method, which has been first developed for LP, has been naturally
extended to SDP (Kojima et al., 1997; Wolkowicz et al., 2000). It is theoretically guaranteed that the pri-
mal–dual interior-point method converges to optimal solutions of the primal–dual pair of SDP Problems
(1) and (2) within the number of arithmetic operations bounded by a polynomial of m and n (Ben-Tal and
Nemirovski, 2001; Wolkowicz et al., 2000).
2.2. Quasiconvex optimization problem

The a-sublevel set of a function f :Rn # R is defined as
Lf ðaÞ ¼ fx 2 Rnjf ðxÞ 6 ag:

A function f is called quasiconvex if its domain and all its sublevel sets Lf ðaÞ for a 2 R are convex.

Let f0 :Rn # R be quasiconvex, and let f1, . . . , fm :Rn # R be convex. The quasiconvex optimization

problem (Boyd and Vandenberghe, 2004, Section 4.2.5) refers to the optimization problem having the form
of
min f0ðxÞ;
s:t: f iðxÞ 6 0; i ¼ 1; . . . ;m;

Ax ¼ b;

9>=>; ð3Þ
where A 2 Rm·n and b 2 Rm.
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2.3. Technical lemmas

The reminder of this section is devoted to introducing some technical results that will be used in the fol-
lowing sections.

Lemma 2.1 (Homogenization). Let Q 2Sn, p 2 Rn, and r 2 R. Then the following two conditions are

equivalent:
ðaÞ
x

1

� �>
Q p

p> r

� �
x

1

� �
P 0; 8x 2 Rn;

ðbÞ
Q p

p> r

� �
� O:
Proof. See Lemma A.3 in Calafiore and El Ghaoui (2004). h

Lemma 2.2 (S-procedure). Let f0(x), f1(x), . . . , fm(x) be quadratic functions in the variable x 2 Rn defined by
fiðxÞ ¼ x>Qixþ 2p>i xþ ri; i ¼ 0; 1; . . . ;m;
with Qi 2Sn, pi 2 Rn, and ri 2 R. Then the implication
f1ðxÞP 0; . . . ; fmðxÞP 0 ) f 0ðxÞP 0 ð4Þ

holds if there exist s1, . . . ,sm satisfying
s1 P 0; . . . ; sm P 0; ð5aÞ

f0ðxÞ �
Xm

i¼1

sifiðxÞP 0; 8x 2 Rn: ð5bÞ
Proof. See Boyd et al. (1994, Section 2.6.3) and references therein. h

Lemma 2.2 implies that (5) is a sufficient condition for the implication (4) to be true. Note that there
exists a particular case in which (5) is both necessary and sufficient. In Lemma 2.2, suppose m = 1 and that
there exists an x 0 satisfying f1(x 0) > 0. Then (4) holds if and only if there exists a s1 satisfying (5). For the
proof see Ben-Tal and Nemirovski (2001, Theorem 4.3.3).
3. Separable uncertainties and robustness functions of trusses

Consider a linear elastic truss in three-dimensional space. Small rotations and small strains are assumed.
Let nd denote the number of degrees of freedom of displacements; let u 2 Rnd

and f 2 Rnd

, respectively, de-
note the vectors of nodal displacements and external forces. The system of equilibrium equations can be
written as
Ku ¼ f ; ð6Þ

where K 2Snd

denotes the stiffness matrix of the truss.
Let a ¼ ðaiÞ 2 Rnm

denote the vector of cross-sectional areas, where nm denotes the number of members.
For a truss, it is well known that the stiffness matrix K can be written as
KðaÞ ¼
Xnm

i¼1

aiK i ¼
Xnm

i¼1

aibib
>
i ; ð7Þ
where K i 2 Snd

and bi ¼ ðbijÞ 2 Rnd

, i = 1, . . . ,nm, are constant matrices and constant vectors.
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3.1. Constraints on mechanical performance

Consider mechanical performance of trusses that can be expressed by constraints in terms of displace-
ments. Let Ql 2Snd

, ql 2 Rnd

, and cl 2 R. Suppose that the constraints on mechanical performance can
be written in the following quadratic inequalities in terms of u:
u>Qluþ 2q>l uþ cl 6 0; l ¼ 1; . . . ; nc; ð8Þ

where nc denotes the number of constraints. Let Ql, ql, and cl be functions of rc 2 Rnr

. Here, rc is regarded as
the vector of parameters representing the levels of performance, and nr denotes the number of these param-

eters. Define H l : Rnr 7!Sndþ1

by
H lðrcÞ ¼ �
QlðrcÞ qlðrcÞ
qlðrcÞ> clðrcÞ

� �
:

Letting PðRndÞ denote the power set of the set Rnd

, define a point-to-set mapping F : Rnr 7!PðRndÞ by
FðrcÞ ¼ u 2 Rnd u

1

� �>
H lðrcÞ

u

1

� �
P 0; l ¼ 1; . . . ; nc

�����
( )

: ð9Þ
Then the constraints (8) are rewritten as
u 2FðrcÞ: ð10Þ
Note that we have restricted ourselves to cases in which the constraints on the truss can be represented by
a finite number of quadratic inequalities. However, there exist various constraints that can be described in
the form of (9) from a practical point of view, because it is known that any single polynomial inequality can
be converted into a system of (a finite number of) quadratic inequalities (see, e.g., Kojima and Tunçel
(2000)).

Example 3.1. As an example, we show the explicit reformulation of the stress constraints of trusses into
(10). Let E denote the elastic modulus of truss members; let ‘i denote the initial unstressed length of the ith
member. From (7) it follows that the stress constraints are written as
rc
i 6

ffiffiffiffiffiffiffiffiffi
E=‘i

p
b>i u 6 rc

i ; i ¼ 1; . . . ; nm; ð11Þ
where R 3 rc
i < 0 and R 3 rc

i > 0 denote the lower and upper bounds of stress of the ith member, respec-
tively. Observing that (11) is rewritten as
ffiffiffiffiffiffiffiffiffi

E=‘i

p
b>i u� rc

i þ rc
i

2

���� ���� 6 rc
i � rc

i

2
; i ¼ 1; . . . ; nm;
we can embed the stress constraints (11) into the form of (10) with
Fðrc; rcÞ ¼ u 2 Rnd u

1

� �> �ðE=‘iÞbib
>
i

ffiffiffiffiffiffiffiffiffi
E=‘i

p
ðrc

i þ rc
i Þ

2
biffiffiffiffiffiffiffiffiffi

E=‘i

p
ðrc

i þ rc
i Þ

2
b>i �rc

i r
c
i

0BB@
1CCA u

1

� �
P 0; i ¼ 1; . . . ; nm

��������
8>><>>:

9>>=>>;;

where nc = nm. Note that ðrc; rcÞ is regarded as the levels of performance in (11). Hence, we have
rc ¼ ðrc; rcÞ with nr = 2nm. h
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3.2. Uncertainty model

Let
K ¼
Ka

K f

� �
; f ¼

f a

f f

� �
;

with Ka 2 Rnd
a�nd

, K f 2 Rnd
f
�nd

, f a 2 Rnd
a , and f f 2 Rnd

f , where
nd
a þ nd

f ¼ nd:
The system (6) of equilibrium equations is rewritten as
Kau ¼ f a; K fu ¼ f f : ð12Þ

Similarly, Ki and bi are decomposed as
K i ¼
Kai

K f i

� �
; bi ¼

bai

bfi

� �
; i ¼ 1; . . . ; nm; ð13Þ
with Kai 2 Rnd
a�nd

, K f i 2 Rnd
f
�nd

, bai 2 Rnd
a , and bfi 2 Rnd

f .
Suppose that fa and Kf are the certain vector and matrix, respectively, whereas Ka and ff depend on some

unknown-but-bounded parameters. We call this uncertainty model of trusses separable uncertainty. We fur-
ther assume that the uncertainty of Ka is caused only by the uncertainties of stiffness of nm

a members, with
the indices i ¼ 1; . . . ; nm

a , where nm
a < nm. The locations of nodes are assumed to be certain. We describe the

uncertainties of member stiffness via the uncertainties of cross-sectional areas of the corresponding nm
a

members, say, the uncertainties of a1; . . . ; anm
a

.

Let fa ¼ ðfaiÞ 2 Rnm
a and ff ¼ ðff iÞ 2 Rnd

f denote the parameter vectors that are considered to be un-
known, or, uncertain. We describe the uncertainties of ða1; . . . ; anm

a
Þ and ff, respectively, by using fa and ff.

Example 3.2. Consider a three-bar truss illustrated in Fig. 1. Nodes (a) and (b) are pin-supported. The
displacement of node (c) in the direction of the x-axis is constrained, i.e., nd = 3. The external forces fa 2 R

and ff 2 R2, respectively, are applied at nodes (c) and (d). The cross-sectional areas of members (1), (2), and
(3) are denoted by a1, a2, and a3, respectively. Suppose that a2, a3, and fa are certain. On the contrary, a1

and ff are assumed to possess uncertainties in terms of unknown-but-bounded parameters fa1 2 R and
ff 2 R2, respectively, i.e.,
(a)

(1)

(2) (c)

0 x

y

(3)

(b)

(d)
ff

f
∼
a

Fig. 1. Three-bar truss.
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a1 ¼ ~a1 þ da1ðfa1Þ; fa1 2Za;

f f ¼ ~f f þ df fðffÞ; ff 2 Zf :
Here, ~a1 2 R and ~f f 2 R2 denote the constant nominal values of a1 and ff, respectively; da1 :R # R and
dff : R2 # R2 denote the perturbation functions of a1 and ff, respectively; Za � R and Zf � R2 denote
the given bounded sets. This uncertainty model can be regarded as a separable uncertainty with nm

a ¼ 1,
nd

a ¼ 1, and nd
f ¼ 2. Indeed, for this truss, the decomposed equilibrium equations (12) are explicitly written

as
Eð~a1 þ da1ðfa1ÞÞ
‘1

ð 1 0 0 Þ þ E~a3

‘3

ð�1 0 0 Þ
� �

u ¼ ~f a; ð14Þ

E~a2

‘2

0 1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

0 �1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

 !
þ E~a3

‘3

0 0 0

0 0 1

� �" #
u ¼ ~f f þ df fðffÞ; ð15Þ
where fa1 and ff are the uncertain parameters, and u is the variable vector. Thus, we can see that (14) and
(15) include, respectively, the uncertain parameters only on the left-hand side matrix and right-hand side
vector, which validates that the truss obeys the separable uncertainty model. h

Let ~a ¼ ð~aiÞ, ~f f , and ~f a denote the nominal values of a, ff, and fa, respectively. Consider the following
uncertainty model:
ai ¼ ~ai þ a0
i fai; i ¼ 1; . . . ; nm

a ;

f f ¼ ~f f þ f 0ff ;
where a0
1; . . . ; a0

nm
a

P 0 and f 0 P 0 are constant coefficients representing the relative magnitudes of uncer-
tainties of a1; . . . ; anm

a
and ff, respectively. We further assume that anm

a þ1; . . . ; anm and fa are certain. For sim-
plicity, we write
eK a :¼ Kað~aÞ; eK f :¼ K fð~aÞ:

Then we achieve the following separable uncertainty model of K and f:
Ka ¼ eK a þ
Xnm

a

i¼1

a0
i faiKai; f a ¼ ~f a; ð16Þ

K f ¼ eK f ; f f ¼ ~f f þ f 0ff ; ð17Þ
where fa 2 Rnm
a and ff 2 Rnd

f are the uncertainty parameters. Define two point-to-set mappings Za:
Rþ7!PðRnm

a Þ and Zf : Rþ7!PðRnd
f Þ by
ZaðaÞ ¼ ff 2 Rnm
a ja P kfk1g; ð18Þ

ZfðaÞ ¼ ff 2 Rnd
f ja P kfk2g: ð19Þ
For a given a P 0, the uncertain parameters fa and ff in (16) and (17), respectively, are assumed to be run-
ning through uncertain sets ZaðaÞ and ZfðaÞ defined by (18) and (19). Roughly speaking, fa 2 ZaðaÞ and
ff 2 ZfðaÞ perturb around the origin with the �width� of a.

Remark 3.3. Note that we have used the l1- and l2-norms, respectively, in order to define Za and Zf in
(18) and (19). There exist several reasons why we choose these norms. Recall that fai describes the
uncertainty of stiffness of the ith member. Since a truss is an assemblage of nodes connected by some
independent members, the perturbation of stiffness of a member from its nominal value does not affect
those of the other members. Hence, we choose the l1-norm which represents the independent uncertainties
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of scalars fa1; . . . ; fanm
a

. Moreover, the assumption (18) is necessary for our approach. Precisely, we shall use
a specific characteristic of the l1-norm in the proof of Proposition 4.2. On the contrary, it is not easy to
justify what kind of uncertainty set should be used for ff from the mechanical point of view. This is because
there exist various phenomena that may possibly cause the uncertainty of external forces. We have used the
l2-norm in (19) as one of adequate choices. In addition, using the l2-norm makes the presentation in Section
4 simple. The l1-norm can be an alternative choice that also seems to be adequate, i.e., letting
Zint
f ðaÞ ¼ f 2 Rnd

f ja P kfk1
n o

; ð20Þ
we may assume ff 2Zint
f ðaÞ. The uncertainty set Zint

f is conventionally used in interval analyses of struc-
tures (see, e.g., Muhanna and Mullen, 2001). We shall show in Remark 4.5 that Zint

f can be dealt with
by our approach developed in Section 4. However, we use Zf for presenting our main result in Section
4 for simplicity. From the point of view of numerical computation, using Zf has an advantage that the opti-
mization problems solved in our algorithm have less numerical complexity compared with the case where
we use Zint

f . Indeed, Zint
f requires more variables in our formulation, which is discussed in Remark 4.7. h

Consequently, the system (6) of equilibrium equations is reduced to
eK au� ~f a ¼ �
Xnm

a

i¼1

a0
i faiKaiu; fa 2ZaðaÞ; ð21Þ

eK fu� ~f f ¼ f 0ff ; ff 2ZfðaÞ: ð22Þ
Let Uða; ~aÞ � Rnd

denote the set of all the possible solutions to (21) and (22), i.e., U is the point-to-set map-
ping U : Rþ � Rnm 7!PðRndÞ defined by
Uða; ~aÞ ¼ fu 2 Rnd j (21), (22)g: ð23Þ
3.3. Robustness function

In this section, we show that the robustness function (Ben-Haim, 2001) of trusses is obtained as the opti-
mal objective value of a mathematical programming problem with infinitely many constraint conditions.
For calculating the robustness function of a simple illustrative truss, see Kanno and Takewaki (2004a, Sec-
tion 3).

It is easy to see that the uncertainty sets Za and Zf defined by (18) and (19) obey so-called info-gap

models (Ben-Haim, 2001). Especially, they satisfy the axioms of nesting and contraction (Ben-Haim,
2001, Section 2.5), i.e., we see (i) Zaða1Þ � Zaða2Þ and Zfða1Þ � Zfða2Þ if 0 6 a1 < a2; (ii)
Zað0Þ ¼ ffa j fa ¼ 0g and Zfð0Þ ¼ fff j ff ¼ 0g.

Consider the following semi-infinite programming problem:
a� ¼ max a : u 2FðrcÞ; 8u 2 Uða; ~aÞf g; ð24Þ
where F and U have been defined in (9) and (23), respectively. Here, by semi-infinite we mean optimization
problems having a finite number of scalar variables and possibly an infinite number of inequality con-
straints. Note that a* defined by (24) depends on the level rc of constraints on mechanical performance
as well as the nominal cross-sectional areas ~a.

The robustness function â : Rnm � Rnr 7!ð�1;þ1	 associated with the constraints (8) is defined by (Ben-
Haim, 2001, Chapter 3)
âð~a; rcÞ ¼
a� if Problem (24) is feasible;

0 if Problem (24) is infeasible:

�
ð25Þ



(a) (b) (c)

Fig. 2. Relation among FðrcÞ, Uða; ~aÞ, and â with various a: (a) aa < â, (b) ab ¼ â, and (c) ac > â.
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Throughout the paper, we assume Uð0; ~aÞ �FðrcÞ for simplicity, and hence Problem (24) is feasible. In
what follows, âð~a; rcÞ is often abbreviated by â or âð~aÞ.

The concept of robust feasibility has been used in the literature of robust optimization (see, e.g., Ben-Tal
and Nemirovski, 2002). Note that a = 0 implies that K and f have no uncertainties. For the fixed ~a 2 Rnm

,
Uð0; ~aÞ is a single point corresponding to the displacements vector, if eK has a full row rank. Hence, ~a is a
feasible solution in the usual sense if u 2 Uð0; ~aÞ satisfies u 2FðrcÞ. For the fixed a 0 > 0, ~a is regarded as a
robust feasible solution if u 2Fð~a; rcÞ satisfies u 2FðrcÞ for all possible realizations fa 2Zaða0Þ and
ff 2 Zfða0Þ. What we are seeking for in (24) is the maximum value of a such that ~a remains to be a robust
feasible solution.

For the two different vectors of design variables ~a1 2 Rnm

and ~a2 2 Rnm

, we say that ~a1 is more robust than
~a2 if âð~a1; rcÞ > âð~a2; rcÞ. Let u1 2 Uðâ; ~a1Þ at f1

a 2 ZaðâÞ and f1
f 2 ZfðâÞ. If there exists an l 2 {1, . . . ,nc}

satisfying
ðu1Þ>QlðrcÞu1 þ 2qlðrcÞ>u1 þ clðrcÞ ¼ 0;
then we say that ðf1
a; f

1
f Þ is the worst case. Note that there exists typically more than a single worst case.

Especially, optimum truss designs maximizing the robustness function or for specified robustness function
often have many worst cases (Kanno and Takewaki, 2004b).

Fig. 2 illustrates the relation among FðrcÞ, Uða; ~aÞ, and â with various values of a. Here, Fig. 2(a) and
(b), respectively, correspond to aa < â and ab ¼ â, where we see that the constraint u 2FðucÞ is satisfied for
all possible u 2 Uða; ~aÞ. The worst case corresponds to the point u 2 Uðâ; ~aÞ on the boundary of FðrcÞ in
Fig. 2(b). It is observed in Fig. 2(c) that some solutions u 2 Uðac; ~aÞ to the equilibrium equations violate the
constraint u 2FðrcÞ, which implies ac > â.

Consequently, the robustness function â can be obtained by solving the optimization problem (24).
However, it should be emphasized that Problem (24) is numerically intractable, because it has infinitely
many constraints. This motivates us to develop an approximation algorithm for solving Problem (24),
which provides a lower bound of the robustness function.
4. Lower bounds of robustness functions

In this section, we propose an approximation algorithm for Problem (24), which provides a lower bound
on the robustness function âð~a; rcÞ. Note that finding a lower bound on the robustness function is more sig-
nificant than finding an upper bound, since a lower bound is regarded as a conservative estimation of the
robustness function, i.e., as a level of uncertainty at which the constraints of mechanical performance are
guaranteed not to be violated.

We start with embedding (22) into a quadratic inequality.
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Proposition 4.1. The condition (22) is equivalent to
u

1

� �> � eK>f eK f
eK>f ~f f

~f
>
f
eK f ðf 0aÞ2 � ~f

>
f

~f f

 !
u

1

� �
P 0: ð26Þ
Proof. From the definition (19) of ZfðaÞ, it is easy to see that (22) is equivalent to
ð eK fu� ~f fÞ
>ð eK fu� ~f fÞ 6 ðf 0aÞ2;
which can be rewritten as (26). h

We next embed (21) into a quadratic inequality. Define the matrix W 2 Rnd
a�nm

a by
W ¼ ðba1; . . . ; banm
a
Þ;
where bai is defined in (13). In what follows, we assume
nd
a 6 nm

a ;
which is usually satisfied for trusses. Let
nn ¼ nm
a � rankW; ð27Þ
where rankW denotes the row rank of W. Then we see nn P 0.
Let Wy 2 Rnm

a �nd
a denote the pseudo-inverse of W. W? 2 Rnm

a �nn

denotes a basis for the nullspace of W,
where the nullspace of W is the set of all vectors g 2 Rnm

a satisfying Wg = 0. For nn P 1, letting m 2 Rnn

, de-
fine n 2 Rnnþndþ1 and Xaiða2Þ 2 Snnþndþ1, i ¼ 1; . . . ; nm

a , by
n ¼ ðm; u; 1Þ;

Xaiða2Þ ¼ a2

O O 0

O ða0
i Þ

2
bib
>
i 0

0> 0> 0

0B@
1CAþ �ðW?i;
Þ

>W?i;
 �ðW?i;
Þ
>Wyi;
 eK a ðWyi;
~f aÞðW?i;
Þ

>

�ðWyi;
 eK aÞ>W?i;
 �ðW
y
i;

eK aÞ>ðWyi;
 eK aÞ ðWyi;
~f aÞðWyi;
 eK aÞ>

ðWyi;
~f aÞW?i;
 ðWyi;
~f aÞWyi;
 eK a �ðWyi;
~f aÞ
2

0BB@
1CCA;
where Wyi;
 and W?i;
 denote the ith row vectors of W� and W?, respectively. Alternatively, for nn = 0, define n

and Xai as
n ¼ ðu; 1Þ;

Xaiða2Þ ¼ a2 ða0
i Þ

2
bib
>
i 0

0> 0

 !
þ
�ðWyi;
 eK aÞ>ðWyi;
 eK aÞ ðWyi;
~f aÞðWyi;
 eK aÞ>

ðWyi;
~f aÞWyi;
 eK a �ðWyi;
~f aÞ
2

 !
:

The following proposition shows the reduction of (21) into a quadratic inequality:

Proposition 4.2. The condition (21) is equivalent to
n>Xaiða2Þn P 0; i ¼ 1; . . . ; nm
a : ð28Þ
Proof. From (7) and (13), Kai is rewritten as Kai ¼ baib
>
i . Hence, we see
Xnm
a

i¼1

a0
i faiKaiu ¼

Xnm
a

i¼1

a0
i faibaib

>
i u ¼ ðba1; . . . ; banm

a
Þdiagða0

i faiÞ
b>1 u


 
 

b>nm

a
u

0B@
1CA: ð29Þ
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By using (29), the equality in (21) is reduced to
eK au� ~f a ¼ �Wdiagða0
i faiÞ

b>1 u


 
 

b>nm

a
u

0B@
1CA;
from which it follows that the uncertain system (21) is equivalent to
Ww ¼ eK au� ~f a; ð30Þ
wi ¼ faið�a0

i b>i uÞ; a P jfaij; i ¼ 1; . . . ; nm
a : ð31Þ
Here, w ¼ ðwiÞ 2 Rnm

is an auxiliary variable vector. Observe that, for p 2 R and q 2 R, the implication
p ¼ faiq; a P jfaij () p2
6 a2q2
holds, from which it follows that (31) is equivalent to
w2
i 6 ða0

i aÞ
2ðb>i uÞ2; i ¼ 1; . . . ; nm

a : ð32Þ

Moreover, we see that any solution to (30) can be written as
w ¼ Wyð eK au� ~f aÞ þW?m ð33Þ

with m 2 Rnn

. Consequently, by using (32) and (33), we see that (30) and (31) are equivalent to
ða0
i aÞ

2ðb>i uÞ2 � ½Wyi;
ð eK au� ~f aÞ þW?i;
m	
2 P 0; i ¼ 1; . . . ; nm

a ;
which can be rewritten as (28). h

For a 2 R+ and rc 2 Rnr

, define Xfða2Þ 2Snnþndþ1 and H 0
lðrcÞ 2Snnþndþ1, l = 1, . . . ,nc, by
Xfða2Þ ¼
O O 0

O � eK>f eK f
eK>f ~f f

0> ~f
>
f
eK f ðf 0Þ2a2 � ~f

>
f

~f f

0B@
1CA;

H 0
lðrcÞ ¼

O O

O H l

� �
; l ¼ 1; . . . ; nc;
so that we obtain
(26) () n>Xfða2Þn P 0;

(8) () n>H 0
lðrcÞn P 0; l ¼ 1; . . . ; nc:
The following proposition, which plays a key role in constructing a relaxation of Problem (24), shows a
relaxation of infinitely many constraints by using a finite number of constraints:

Proposition 4.3. The implication
u 2 Uða; ~aÞ ) u 2FðrcÞ ð34Þ

holds if there exist ql and ðs1l; . . . ; snm

a lÞ, l = 1, . . . , nc, satisfying
H 0
lðrcÞ � qlXfða2Þ �

Xnm
a

i¼1

silXaiða2Þ � O; l ¼ 1; . . . ; nc; ð35Þ

ql P 0; s1l; . . . ; snm
a l P 0; l ¼ 1; . . . ; nc: ð36Þ
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Proof. From Propositions 4.1 and 4.2 it follows that the system of (21) and (22) is equivalent to
n>Xfn P 0; n>Xain P 0; i ¼ 1; . . . ; nm
a :
Observe that the constraints (8) are reduced to
n>H 0
ln P 0; l ¼ 1; . . . ; nc:
Consequently, the implication (34) holds if and only if the implication
n>Xfn P 0; n>Xain P 0; i ¼ 1; . . . ; nm
a ) n>H 0

ln P 0 ð37Þ

holds for each l = 1, . . . ,nc. The assertion of this proposition is obtained by applying Lemmas 2.1 and Lem-
ma 2.2 to (37). h

Fig. 3 illustrates the relation among the three propositions presented in this section. By using Proposi-
tions 4.1, 4.2, 4.3, we have shown that the set of constraints (35) and (36) is a sufficient condition for the
infinitely many constraints of Problem (24) to be satisfied. Based on this sufficient condition, we next con-
struct lower bounds of Problem (24).

Lemma 4.4. Consider the following problem in variables ðt; q; sÞ 2 R� Rnc � Rnm
a nc

with q ¼ ðq1; . . . ; qncÞ and

s ¼ ðs11; . . . ; snm
a 1; . . . ; s1nc ; . . . ; snm

a ncÞ:
t� :¼ max t : H 0
l � qlXfðtÞ �

Xnm
a

i¼1

silXaiðtÞ � O; ql P 0; s1l; . . . ; snm
a l P 0; l ¼ 1; . . . ; nc

( )
: ð38Þ
Then

(i) âð~a; rcÞ2 P t�;
(ii) Problem (38) is a quasiconvex programming problem.
Fig. 3. Reduction of infinitely many constraints into a finite number of positive semidefinite constraints.
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Proof. (i) Recall that the robustness function â is defined by (25) with Problem (24). It follows from Prop-
osition 4.3 that the constraints of Problem (24) are satisfied if the constraints of Problem (38) are satisfied,
which completes the proof.

(ii) Observe that we can reformulate the standard form of quasiconvex optimization problem (3) into the
following problem in variables (t,x) 2 R · Rn:
min s;

s:t: x 2Lf0
ðsÞ;

f iðxÞ 6 0; i ¼ 1; . . . ;m;

Ax ¼ b;

9>>>=>>>; ð39Þ
where the s-sublevel set Lf0
ðsÞ of f0 is convex for any s 2 R. For a given t and for each l = 1, . . . ,nc, define a

set Tl by
Tlð�tÞ ¼ ðql; s1l; . . . ; snm
a lÞ 2 Rnm

a þ1 H 0
l � qlXfðtÞ �

Xnm
a

i¼1

silXaiðtÞ � O; ql P 0; s1l; . . . ; snm
a l P 0

�����
( )

:

We easily see that TlðtÞ is convex for any given t 2 R, since Tl is defined by a linear matrix inequality. By
regarding t 2 R as an auxiliary variable, we can rewrite Problem (38) as
max t;

s:t: ðql; s1l; . . . ; snm
a lÞ 2Tlð�tÞ; l ¼ 1; . . . ; nc:

	
ð40Þ
By putting t 0 = �t, Problem (40) is reduced to
min t0;

s:t: ðql; s1l; . . . ; snm
a lÞ 2Tlðt0Þ; l ¼ 1; . . . ; nc:

	
ð41Þ
We can embed Problem (41) into Problem (39), i.e., Problem (41) is shown to be a quasiconvex optimiza-
tion problem, which completes the proof. h

Remark 4.5. The assumption of separable uncertainty is unnecessary in order to obtain a result similar to
Lemma 4.4, i.e., to formulate a quasiconvex optimization problem similar to (38) providing a lower bound
of âð~a; rcÞ2. In (a)–(d) below, we introduce a framework that can represent a broader class of uncertainty
models, and briefly show the outline of constructing a corresponding quasiconvex optimization
problem. h

(a) Definition of the uncertainty model: let Hp 2 Rmp�nd

, p = 1, . . . ,q, denote constant matrices, where
mp 2 {1, . . . ,nd}. Define Zf : Rþ7!PðRndÞ by
ZfðaÞ ¼ f 2 Rnd j a P kHpfk2; p ¼ 1; . . . ; q
n o

:

Here, we have to choose Hp so that ZfðaÞ becomes a bounded set for any a P 0. Various uncertainty
models can be described by choosing Hp appropriately. Putting nm

a ¼ nm in (18), consider the follow-
ing uncertainty model:
ai ¼ ~ai þ a0
i fai; i ¼ 1; . . . ; nm; fa 2ZaðaÞ; ð42Þ

f ¼ ~f þ f 0ff ; ff 2 ZfðaÞ: ð43Þ
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By introducing auxiliary variables g 2 Rnd

and using (42) and (43), the system (6) of equilibrium equa-
tions is reduced to
eK uþ
Xnm

i¼1

a0
i faiK iu ¼ g; fa 2 ZaðaÞ; ð44Þ

~f þ f 0ff ¼ g; ff 2ZfðaÞ: ð45Þ
It should be emphasized that the uncertainty model defined by (42) and (43) does no longer require
that the system (6) of equilibrium equations can be decomposed into two parts as (16) and (17).
Clearly, the separable uncertainty model introduced in Section 3.2 is included as a particular case
of (42) and (43). Moreover, Zf itself is an extension of Zf defined by (19), i.e., Zf can be expressed
in the form of Zf by letting q = 1 and H1 be an identity matrix. The interval uncertainty set (20) intro-
duced in Remark 3.3 is also included in Zf as the particular case where Hp ¼ ðHpjÞ 2 R1�nd

,
p = 1, . . . ,q, are the row vectors defined as
Hpj ¼
1 for j ¼ p;

0 for j 6¼ p;

�

and q = nd.

(b) Reduction of (45) (analogous to Proposition 4.1): we easily see that (45) can be embedded into the
following quadratic inequalities in terms of g:
ðf 0aÞ2 P ðg� ~f Þ>H>p Hpðg� ~f Þ; p ¼ 1; . . . ; q: ð46Þ
For consistency with the formulations below, defining n 2 Rnnþ2ndþ1 and Xfp 2 Snnþ2ndþ1, p = 1, . . . ,q,
as
n ¼ ðm; g; u; 1Þ;

Xfpða2Þ ¼

O O O 0

O �H>p Hp O H>p Hp
~f

O O O 0

0> ~f
>
H>p Hp 0> ðf 0Þ2a2 � ~f

>
H>p Hp

~f

0BBB@
1CCCA;
we rewrite (46) as
n
>
Xfpn P 0; p ¼ 1; . . . ; q;
which has been shown to be equivalent to (45).
(c) Reduction of (44) (analogous to Proposition 4.2): by introducing w 2 Rnm

, we see that (44) is equiv-
alently rewritten as
Ww ¼ eK u� g; (31): ð47Þ
By using quadratic embedding and eliminating w, we see that (47) is equivalent to
ða0
i aÞ

2ðb>i uÞ2 � Wyi;
ð eK u� gÞ þW?m
h i2

P 0; i ¼ 1; . . . ; nm:
Thus, the condition (44) is embedded into the following series of quadratic inequalities:
n
>
Xaiða2Þn P 0; i ¼ 1; . . . ; nm;
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where Xaiða2Þ 2Snnþ2ndþ1, i = 1, . . . ,nm, are defined as
Xaiða2Þ ¼ a2

O O O 0

O O O 0

O O ða0
i Þ

2
bib
>
i 0

0> 0> 0> 0

0BBBBB@

1CCCCCAþ
�ðW?i;
Þ

>W?i;
 ðW?i;
Þ
>Wyi;
 �ðW?i;
Þ

>Wyi;
 eK 0

ðWyi;
Þ
>W?i;
 �ðWyi;
Þ

>Wyi;
 ðWyi;
Þ
>Wyi;
 eK 0

�ðWyi;
 eK Þ>W?i;
 ðWyi;
 eK Þ>Wyi;
 �ðWyi;
 eK Þ>ðWyi;
 eK Þ 0

0> 0> 0> 0

0BBBBBBB@

1CCCCCCCA
:

(d) Resulting problem (corresponding to Lemma 4.4): it is easy to obtain a result similar to Proposition
4.3. Consider the following problem in variables ðt; q; sÞ 2 R� Rqnc � Rnmnc

with
q ¼ ðq11; . . . ; qq1; . . . ; q1nc ; . . . ; qqncÞ and s ¼ ðs11; . . . ; snm1; . . . ; s1nc ; . . . ; snmncÞ:
t� :¼ max t : H 0
l �
Xq

p¼1

qplXfpðtÞ �
Xnm

i¼1

silXaiðtÞ � O; l ¼ 1; . . . ; nc; q P 0; s P 0

( )
: ð48Þ
Then (i) âð~a; rcÞ2 P t�; (ii) Problem (48) is a quasiconvex programming problem. h

Lemma 4.4(ii) is important, since it guarantees that Problem (38) can be solved by using a bisection
method (Boyd and Vandenberghe, 2004, Section 4.2.5). Let I denote the identity matrix with an appropriate
size. For a fixed t, consider the following problem in variables ðs; q; sÞ 2 R� Rnc � Rnm

a nc

:

min s;

s.t. H 0
l � qlXfðtÞ �

Pnm
a

i¼1

silXaiðtÞ þ sI � O;

ql P 0; s1l; . . . ; snm
a l P 0; l ¼ 1; . . . ; nc;

9>>>=>>>; ð49Þ
which is regarded as a convex feasibility problem of Problem (38) (Boyd and Vandenberghe, 2004, Section
4.2.5). Note that Problem (49) is an SDP problem, which can be embedded into the dual standard form (2).
Let (s*,q*,s*) denote an optimal solution to Problem (49) for a given t. Recall that t* has been defined in
(38). If s* 6 0, then (t,q*,s*) is a feasible solution of Problem (38), which implies t* P t. On the contrary, if
s* > 0, then t* < t. Consequently, we see that the following bisection method solves Problem (38):

Algorithm 4.6 (Bisection method for Problem (38))

Step 0: Choose t0 and t0 satisfying 0 6 t0
6 t� 6 t0, and the tolerance � > 0. Set k :¼ 0.

Step 1: If tk � tk
6 �, then STOP. Otherwise, set t :¼ ðtk þ tkÞ=2.

Step 2: Find an optimal solution (s*,q*,s*) to the SDP problem (49).
Step 3: If s* 6 0, then set tk+1 :¼ t and tkþ1

:¼ tk
. Otherwise, set tkþ1

:¼ t and tk+1 :¼ tk.
Step 4: Set k :¼ k + 1, and go to Step 1.

Algorithm 4.6 finds a global optimal solution to Problem (38) by solving some SDP problems, where
exactly dlog2ððt

0 � t0Þ=�Þe iterations are required before the algorithm terminates. Here, for p 2 R, dpe de-
notes the minimum integer that is not smaller than p. At Step 0, we may simply choose t0 = 0, and a suf-
ficiently large t0

. As a possible choice of t0
, we may compute the robustness function in the case where the

vector of member cross-sectional areas a is certain, and only ff has uncertainty without changing the set-
tings in (17). Since this situation can be regarded as a restricted case of the perturbation defined by (16)
and (17), the square of the robustness function with the certain a1; . . . ; anm

a
corresponds to an upper bound

of t* with the uncertain a1; . . . ; anm
a

. It should be emphasized that, by using Proposition 5.1 in (Kanno and
Takewaki, 2004a), the exact value of the robustness function can be computed easily if all the member
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cross-sectional areas are certain. If t* is not bounded from above, then we cannot choose t0
satisfying the

condition in Step 0. In this case, Algorithm 4.6 terminates with t ¼ tk
for any positive (finite) t0

. The positive
infinite robustness function implies that the uncertainty considered is not critical for the truss in the sense of
mechanical performance constraints (10). Hence, from a practical point of view, it suffices to know that t* is
very large, even if no guarantee is obtained for t* and/or âð~a; rcÞ to be positive infinite.

At Step 2 of each iteration, we solve Problem (49), which can be embedded into the dual SDP problem
(2) with m ¼ ncðnm

a þ 1Þ þ 1 and n ¼ ncðnn þ nd þ nm
a þ 2Þ. It should be emphasized that a global optimal

solution to an SDP problem (49) can be obtained by using the primal–dual interior-point method, where
the number of arithmetic operations is bounded by a polynomial of m and n (Kojima et al., 1997; Wol-
kowicz et al., 2000). This indicates that the computational cost required by Algorithm 4.6 does not increase
drastically even for large scale trusses.

Remark 4.7. Recall that we have introduced a framework of uncertainty representation in (42) and (43) of
Remark 4.5. It has been illustrated that this framework can express a broader class of uncertainty models
including the separable uncertainty defined in Section 3. Then we have attained the quasiconvex problem
(48) providing a lower bound on the robustness function. In a manner similar to Algorithm 4.6, we can
obtain the optimal solution of Problem (48) by using the bisection method in which we solve some convex
feasibility problems formulated as the SDP problems. Note that Problem (48) has a slightly different form
than Problem (38). Hence, the resulting SDP problem will be different from Problem (49). Since the
uncertainty representation (42) and (43) includes the separable uncertainty model, we can obtain a lower
bound of the robustness function of a truss with the separable uncertainty by solving Problem (48).
However, it is desirable to solve Problem (38) rather than Problem (48) if a truss obeys the separable
uncertainty model. In what follows, we investigate the size of SDP problems solved in the bisection method
for Problems (38) and (48), i.e., we compare m and n when the corresponding feasibility problems are
transformed into the dual standard form (2).

(a) Consider the separable uncertainty model. Then the optimal solution of Problem (38) is obtained by
solving Problem (49) successively. Here, Problem (49) has the ncðnm

a þ qÞ linear inequality constraints
and requirement such that nc symmetric matrices in Snnþndþ1 should be positive semidefinite, i.e.,
Problem (49) is embedded into the form of Problem (2) with n ¼ ncðnn þ nd þ nm

a þ qþ 1Þ. On the
other hand, the convex feasibility problem for Problem (48) has the ncðnm

a þ qÞ linear inequality con-
straints and requirement such that nc symmetric matrices in Snnþ2ndþ1 should be positive semidefinite,
i.e., n ¼ ncðnn þ 2nd þ nm

a þ qþ 1Þ in the form of Problem (2). In both cases, we see m ¼
ncðnm

a þ qÞ þ 1. Thus, if the truss obeys the separable uncertainty model, then it is recommended to
use the formulation (38) rather than (48) from the view point of problem size n.

(b) It should be also noted that m and n depend on the definition of the load uncertainty set Zf in
Remark 4.5, since they depend on q. Consider the uncertainty set defined in (42) and (43). Then
the convex feasibility problem for Problem (48) is transformed into the form of Problem (2) with
m = nc(nm + q) + 1 and n = nc(nn + 2nd + nm + q + 1). As observed in Remark 4.5, we see q = 1 if
we define Zf by using the l2-norm as is done in (19). On the other hand, we see q = nd if we use
the l1-norm as is done in (20). Consequently, using (19) has less numerical complexity compared with
(20) in the sense of m and n. h
5. Numerical experiments

The lower bounds on the robustness functions are computed for various trusses by using Algorithm 4.6.
In Step 2 in Algorithm 4.6, the SDP problem (49) is solved by using SeDuMi Ver. 1.05 (Sturm, 1999), which
implements the primal–dual interior-point method for the linear programming problems over symmetric
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cones. Computation has been carried out on Pentium M (1.5 GHz with 1 GB memory) with MATLAB Ver.
6.5.1 (The MathWorks, 2002).

5.1. Three-bar truss

Recall the three-bar truss introduced in Example 3.2 and is illustrated in Fig. 1. Nodes (a) and (b) are
pin-supported at (x,y) = (0, 0) and (100, 0) in cm, respectively. The location of node (c) in the direction of
the x-axis is constrained at x = 100 in cm. The lengths of members (1), (2), and (3), respectively, are
50.0 cm, 100

ffiffiffi
2
p

cm, and 50.0 cm. The elastic modulus is 200 GPa.
We assume that the cross-sectional area of member (1) has uncertainty, whereas those of members (2)

and (3) are certain. The external loads applied at node (d) have uncertainty, whereas those applied at node
(c) are certain. The nominal cross-sectional areas are given as
~a ¼ ð30:0; 50:0; 20:0Þ cm2:
We consider the following two nominal load scenarios:
ðCase 1Þ : ~f a ¼ 700 kN; ~f f ¼ ð0; 1000Þ kN;

ðCase 2Þ : ~f a ¼ 300 kN; ~f f ¼ ð0; 1300Þ kN:
The coefficients of uncertainty in (16) and (17) are
a0
1 ¼ 1:0 cm2; f 0 ¼ 100:0 kN:
We denote by ri the stress of the ith member. Consider the stress constraints of all members formulated as
jrij 6 rc
i ; i ¼ 1; . . . ; nm; ð50Þ
where rc
i ¼ 1:0 GPa, i = 1, . . . ,nm.

The lower bounds of the robustness functions âð~a; rcÞ are computed by using Algorithm 4.6 for the two
cases. We set t0 = 0, t0 ¼ 100:0, and � = 10�3. The lower bounds (t*)1/2 are obtained as 5.3847 and 4.9498
for (Case 1) and (Case 2), respectively, where 17 iterations are required in the algorithm for each case. In
this example, nn defined by (27) is nn = 0. Hence, the dimensions of SDP problem in a standard form (2) are
n = 18 and m = 7, respectively. The average and standard deviation of CPU time, respectively, required to
solve each SDP problem (49) are 0.31 s and 0.10 s.

In order to verify these results, we randomly generate a number of fa and ff satisfying (18) and (19),
respectively, by putting a = (t*)1/2, and compute the corresponding member stresses ri. Figs. 4 and 5 show
the obtained stress states ðr1=rc

1; r3=rc
3Þ for (Case 1) and (Case 2), respectively. It is observed from Figs. 4

and 5 that the stress constraints (50) for members (1) and (3) are satisfied for all generated (fa,ff). r2 also
satisfies (50) for all generated (fa,ff), where jr2j is always strictly smaller than rc

2. Consequently, the ob-
tained values (t*)1/2 are verified to be conservative estimations, or lower bounds, of â. In (Case 1), it is ob-
served from Fig. 4 that the worst case corresponds to (fa,ff) such that the constraint r1 6 rc

1 becomes
active. On the other hand, in (Case 2), we see from Fig. 5 that the constraint r3 6 rc

3 becomes active at
the worst case. Thus, the worst case depends on the settings of nominal values of external loads. In Figs.
4 and 5, we see that the maximum values of r1 and r3 are very close to rc

1 and rc
3, respectively. This implies

that the obtained values (t*)1/2 are sufficiently tight lower bounds, i.e., (t*)1/2 are very close to the exact â.

5.2. 20-bar truss

Consider a plane truss illustrated in Fig. 6, where nd = 16 and nm = 20. Nodes (a) and (b) are pin-
supported at (x,y) = (0, 0) and (0, 100) in cm, respectively. The lengths of members in the x- and y-
directions, respectively, are 100 cm and 50 cm. The elastic modulus of each member is 200 GPa.
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Fig. 4. Stress states of the 3-bar truss (Case 1) for randomly generated fa 2ZaðaÞ and ff 2Zf ðaÞ with a = 5.3847.
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Fig. 5. Stress states of the 3-bar truss (Case 2) for randomly generated fa 2ZaðaÞ and ff 2Zf ðaÞ with a = 4.9498.
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We assume that the cross-sectional area of members (1)–(5) have uncertainty, whereas those of members
(6)–(20) are certain. The external loads applied at nodes (e)–(j) have uncertainty, whereas those applied at
nodes (c) and (d) are certain, i.e., nm

a ¼ 5, nd
a ¼ 4, and nd

f ¼ 12. No external loads are applied at nodes (c)
and (d), i.e., ~f a ¼ 0. The nominal external loads (200.0, 0) kN, (500.0, 0) kN, (700.0,�100.0) kN, and
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Fig. 6. 20-bar truss.
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(0,�100.0) kN, respectively, are applied at nodes (e), (g), (i), and (j). As the sets of nominal cross-sectional
areas, we consider the following three cases:
ðCase 1Þ : ~ai ¼ 26:0 cm2; i ¼ 1; . . . ; 5;

ðCase 2Þ : ~ai ¼ 30:0 cm2; i ¼ 1; . . . ; 5;

ðCase 3Þ : ~ai ¼ 34:0 cm2; i ¼ 1; . . . ; 5;
and
~ai ¼ 20:0 cm2; i ¼ 6; . . . ; 20:
The coefficients of uncertainty in (16) and (17) are
a0
i ¼ 1:0 cm2; i ¼ 1; . . . ; 5;

f 0 ¼ 100:0 kN:
We consider the stress constraints (50) for all members with rc
i ¼ 1:0 GPa, i = 1, . . . ,nm.

The lower bound of the robustness function âð~a; rcÞ is computed by using Algorithm 4.6 for each case.
We set t0 = 0, t0 ¼ 50:0, and � = 10�3. The lower bounds (t*)1/2 are obtained as 1.2679, 2.1243, and 2.1645
for (Case 1), (Case 2), and (Case 3), respectively, where 16 iterations are required in the algorithm for each
case. Thus, the robustness functions depends on the nominal cross-sectional areas. Note that nn = 1 in this
example, where nn has been defined in (27). Hence, if we embed the SDP problem (49) into a dual standard
form (2), the dimensions of the resulting problem are n = 480 and m = 121. The average and standard devi-
ation of CPU time, respectively, required to solve each SDP problem (49) are 7.08 s and 1.64 s.

We next randomly generate a number of fa and ff satisfying (18) and (19), respectively, by putting
a = (t*)1/2, and compute the corresponding member stresses ri. Figs. 7–9 show the obtained member



Fig. 7. Stress states of the 20-bar truss (Case 1) for randomly generated fa 2ZaðaÞ and ff 2Zf ðaÞ with a = 1.2679.

Fig. 8. Stress states of the 20-bar truss (Case 2) for randomly generated fa 2ZaðaÞ and ff 2Zf ðaÞ with a = 2.1243.
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stresses ri=rc
i , i = 1, . . . , 20, for (Case 1), (Case 2), and (Case 3), respectively. It is observed from Figs. 7–9

that the stress constraints (50) for all members are satisfied for all generated (fa,ff), which verifies that the
obtained values (t*)1/2 are certainly lower bounds of â. In (Case 1), it is observed from Fig. 7 that the worst
case corresponds to (fa,ff) such that the constraints r2 6 rc

2 and/or r3 P �rc
3 become active. In (Case 3),



Fig. 9. Stress states of the 20-bar truss (Case 3) for randomly generated fa 2ZaðaÞ and ff 2Zf ðaÞ with a = 2.1645.
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from Fig. 9, we can see that the worst case corresponds to (fa,ff) such that the constraints r12 P �rc
12 be-

comes active. On the contrary, in (Case 2), we see from Fig. 8 that all the constraints r2 6 rc
2, r3 P �rc

3,
and r12 P �rc

12 may possibly become active. Thus, the critical members, the stress constraints of which
possibly become active, depend on the settings of nominal values of member cross-sectional areas. It is ob-
served from Figs. 7–9 that, for each case, there exists at least one member whose magnitude of stress ri

possibly becomes very close to its upper bound rc
i . This implies that Algorithm 4.6 provides sufficiently

tight lower bounds, i.e., the obtained value (t*)1/2 is very close to the exact value of â in each case.
6. Conclusions

In this paper, we have proposed an approximation algorithm for computing the robustness functions of
trusses under the load and structural uncertainty models. The effective method for computing lower bounds
of the robustness functions may permit us to apply the info-gap decision theory (Ben-Haim, 2001) to
designing trusses which never encounter violation of mechanical performance constraints under the uncer-
tainty considered.

We have introduced an uncertainty model referred to as a separable uncertainty model, where the exter-
nal forces as well as the member stiffness include uncertain parameters. More general framework has been
also defined to represent coupled uncertainties of the external forces and the member stiffnesses. We assume
that the constraints on mechanical performance can be expressed by using some quadratic inequalities in
terms of displacements. In fact, we can deal with the polynomial inequality constraints in terms of displace-
ments by converting them into a finite number of quadratic inequalities. Then the robustness function is
obtained as the optimal objective value of a semi-infinite optimization problem having a finite number
of variables and infinitely many constraint conditions.

By using quadratic embedding of the uncertainty and the S-procedure, we have formulated some finite-
dimensional semidefinite constraints corresponding to a sufficient condition for the infinite number of
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constraints. Then a quasiconvex optimization problem is formulated, which provides the lower bound, i.e.,
a conservative estimation, of the robustness function. In order to obtain a global optimal solution of the
present quasiconvex optimization problem, a bisection method has been proposed, where a finite number
of SDP problems are successively solved by the primal–dual interior-point method.

In the numerical examples, lower bounds on the robustness functions of trusses with separable uncer-
tainties have been computed under various conditions of uncertainties by using the proposed algorithm.
It has been shown that the lower bounds of the robustness function, as well as the worst cases, depend
on the nominal values of member cross-sectional areas and external forces. We have also illustrated that
the obtained lower bounds are very close to the exact values of the robustness function.
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